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SUMMARY

Over the area of a single CCD, the residual PSF whisker amplitude shall be no
more than 0.04′′ after removal of a linear fit in both x and y.

BACKGROUND

Weak lensing measurements require that the PSF shape of an unresolved source be
measured to high accuracy. The purpose of this research note is to quantify what
is meant by “high accuracy.”

Weak lensing causes the shapes of intrinsically round objects to be distorted slightly
such that they appear to be slightly elliptical. While no single object is intrinsically
round, if the intrinsic shapes of galaxies are uncorrelated with one another, one
can average the apparent shapes of many thousands of such objects to extract an
apparent distortion that is attributed to weak lensing. However, the measured
shapes of galaxies will include a component due to the point spread function (PSF)
of the combined telescope, atmosphere, and instrument that is correlated among
galaxies. Removing this contribution requires careful measurement of the PSF,
which is done using isolated stars in the same field.

First, begin with definitions of fundamental quantities that characterize weak lens-
ing measurements. In the standard theory of conic sections, one parameterizes an
ellipse in the following manner. Let

a = major axis,

b = minor axis,

φ = position angle of major axis w.r.t. a fiducial x axis.

Often one uses one or more of three derived parameters:

ε = 1− b/a is the ellipticity,

c =
√
a2 − b2 is the focus or “whisker length”,

e = c/a =
√

1− (1− ε)2 is the eccentricity.

All parameters except ellipticity are well established in mathematics. The definition
of ellipticity follows Hubble’s 1936 convention. In optics, the eccentricity e is also
referred to as the “conic constant”.

Note that for small ellipticities, e ≈
√
2ε.
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The weak lensing community has established its own definitions and notations that
are inconsistent with well established tradition; however, we plow ahead bravely,
nonetheless.

The “ellipticity vector” is defined in terms of the second moments of a PSF as
follows:

e1 = (〈x2〉 − 〈y2〉)/(〈x2〉+ 〈y2〉),
e2 = 2〈xy〉/(〈x2〉+ 〈y2〉).

In terms of the conic parameters, we have:

〈x2〉+ 〈y2〉 = a2 + b2,

e2/e1 = tan 2φ,
√

e21 + e22 = e2/(2− e2) = c2/(a2 + b2).

For small ellipticities, the length of the “ellipticity” vector is, in fact, the classical
Hubble ellipticity ε (whew!).

Define an “ellipticity vector” ~ε whose amplitude is the ellipticity ε and whose po-
sition angle is 2φ. This vector characterizes the “shear” in the shape of a galaxy
induced by weak lensing. The reason for the factor 2 multiplying the position angle
is that shear is a tensor quantity; rotation of an ellipse by π radians leaves the
ellipse unchanged.

While the weak lensing signal itself is a dimensional quantity characterized, say, by
the ellipticity vector, the PSF is a convolution of a number of contributions. Di-
mensionless parameters like ellipticity are not preserved during convolution; however
dimensional parameters, particularly the “whisker length” c add in quadrature dur-
ing convolution. For this reason, it is preferable to place requirements on whisker
length, not PSF shape.

WEAK LENSING EXPERIMENT

We construct a very simple-minded weak lensing experiment that, nevertheless,
conveys enough information to establish requirements on the optics.

Take a DES field of diameter 2.2o. Divide the field into two regions, which are
separated by half this - roughly 1o. Measure the ellipticity vector ~ε for each galaxy.

Let ~γj be the average of the ellipticity vectors in region j. The contributions to γ
from the shapes of inidividual galaxies will largely cancel out (assuming that they
are uncorrelated), but the contribution of shear due to weak lensing, averaged over
the region, will not cancel.

The covariance between the two regions is a measure of the correlation in the shapes

of galaxies that are separated by 1o. Let γ2

i = ~γ1 · ~γ2 be the amplitude of the dot
product between the two regions for the ith DES field. This parameter, for one
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field, gives one measure of the covariance on 1o scales. We average this quantity
over all Nf ≈ 5000 DES fields:

γ̄2 =
Nf
∑

i=1

γ2

i /Nf .

This quantity gives an estimate of the true covariance, 〈γ2〉 on 1o scales. The “error”
in this estimate (i.e., the difference between the estimate and the true covariance)
has three contributions:

1) “shape noise” - the fact that galaxies are intrinsically not round, but we
expect their shapes to be uncorrelated, so averaging the shapes of thousands
of galaxies ultimately gives a measured of the intrinsic cosmic shear;

2) “cosmic variance” - the fact that we only sample a finite number of more-
or-less independent pieces of the universe;

3) systematic error introduced by imperfect correction of measurements for the
PSF.

On 1o scales, the first two contributions are comparable. [This result is contrary
to common wisdom, I am told, but I don’t know why I get a different result.]
The “shape noise” σshape for one field is given approximately by σshape1field ≈
(0.32)2 × 2/(2Ngal), where 0.32 is the typical ellipticity of a galaxy, Ngal is the
number of galaxies per field, the factor 2 accounts for the fact that we divide the
field in half, that we compute the difference in ellipticity between the two, and that
a factor 2 comes in when computing the ”error” in the variance. The shape noise is
expected to be uncorrelated among fields, and thus the total error in the variance

is given by σshape ≈ (0.32)2× 2/(Ngal

√

Nf ). For a density of 10 galaxies arcmin−1,

we find σshape ≈ 2× 10−8.

Each DES field provides one measure of the covariance on 1o scales. The total
number of samples is Nf . The “error” in estimating the covariance, γ2, from a
large number of samples depends on the statistical properties of the shear field.
For Gaussian statistics, the “error” in γ̄2 due to cosmic variance is roughly σCV ≈
γ2/

√

Nf . For γ = 0.001 (the approximate value on 1 degree scales) and Nf = 5000,

the error in estimating γ2 is thus σCV = 1.4× 10−8.

An imperfectly calibrated PSF will also contribute to the estimated covariance. The
calibration procedure, at a minimum has three features:

1) The PSF for each CCD is calibrated independently, using stars;
2) A linear fit as a function of CCD row and column is made to each of the e1

and e2 parameters measured for stars;
3) A principal components analysis (PCA) will be applied to the residual PSF

shapes from a combination of many frames to better calibrate that portion
of the PSF spatial variation that cannot be modelled with a linear function.
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Let w be the uncalibrated residual“whisker” length for a stellar PSF, as defined
above, after removal of the linear term in step (2). This parameter contains con-
tributions from many causes, including the optics, telescope tracking error, wind
shake, etc. These contributions all add in quadrature. Let g be the characteristic
size of the smallest galaxy that will be used in the weak lensing analysis. In practice
g is of order the total PSF size, about 0.9′′ FHWM. The induced ellipticity in a
galaxy image is given by ε = (w/g)2/2. It will be presumed that these systematic
patterns are uncorrelated with the shear patterns on the sky.

Systematic errors are not necessarily reduced by averaging over many fields. Here,
it will be assumed that the PCA analysis reduces the error in the PSF ellipticity
calibration by a factor 10, based on analyses of existing Blanco data by Jain and
Jarvis (2006). [This reduction is actually conservative - much better reductions
have been achieved in practice.] If we designate this reduction factor by F (= 1/10),
we find that the contribution to the total covariance error is σPSF = (w/g)4F 2/4.
We want this value to increase the total error by no more than 10%. This condition
becomes

σPSF =
√

σ2

CV + σshape ×
√
1.12 − 1.

This is the final requirement on the optics PSF for residual whisker length
after removal of a linear fit to the PSF shape. Evaluating, we find w = 0.04 arcsec
rms.
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